
Dependency Injection

Milad Ebrahimi
Saeed Tahmasbi
Hamed Safaei

What is Dependency Injection?

What?

What is Dependency Injection

Wikipedia:

In software engineering, dependency injection is a technique whereby
one object (or static method) supplies the dependencies of another
object.

What is Dependency

When class A uses some functionality of class B, then it's said
that class A has a dependency of class B.

class A class B

How should we use Dependencies

Before we can use methods of other classes, we first need
to create the object of that class.

What is Dependency Injection actually

Transferring the task of creating the dependency object to
someone else and directly using the dependency is called
dependency injection.

Abstract example of Dependency Injection

Abstract example of Dependency Injection

Dependency Injection
in Practice

How?

Main ideas of DI in unity

● Injection

1. Constructor Injection

Main ideas of DI in unity

● Injection

2. Field Injection

Main ideas of DI in unity

● Injection

3. Property Injection

Main ideas of DI in unity

● Injection

4. Method Injection

Main ideas of DI in unity

● Binding

Every dependency injection framework is ultimately just a
framework to bind types to instances.

Main ideas of DI in unity

● Binding

Main ideas of DI in unity

● Installer

Often, there is some collections of related bindings for
each sub-system and so it makes sense to group those
bindings into a re-usable object.

Main ideas of DI in unity

● Installer

Advantages and Disadvantages

Why?
and

Why Not?

● Runtime Changes
● Easier Unit Testing
● Boilerplate Code Reduction
● Easier Extending (Open Closed principle)
● Loose Coupling (Open Closed principle)
● Depending on Abstraction

Why DI?

● Injecting dependencies can be done by configuration files.
runtime changes with DI would be super easy.

● dependencies can be injected according to conditions and states
of the Application.

Runtime Changes

● Consider a situation that you want to test your application with
sqlite3 database but your production database is PostgreSQL.
since client libraries are different, you can inject database client
library.

● If you need to mock some data you can add a mock class and
inject it in testing mode.

Easier Unit Testing

● Because Instantiating of dependencies are not done in classes and
DI framework does it, boilerplate code is reduced.

● Code duplication is reduced since instantiating dependencies and
some logics implemented once.

Boilerplate Code Reduction

● Consider that we want to add a new type of weapon to our
example. we just add a Class for new Weapon (e.g AK47) and
register it to DI Component.

● Hooray! No need to change Samurai class.

Easier Extending

● Removing dependencies through DI leads to loose Coupling for
classes in Application.

Loose Coupling

Depending on Abstraction

● Using DI enforces developers to follow the principle of
"Depending on Abstraction"

● Abstraction causes easier extending and changing
Applications.

● Increasing Runtime Errors
● IDE Automation? Forget about it
● Management Issues
● Slow Initialization
● Same libraries, Different APIs

and Why Not?

● Consider a situation when a developer types PostgrSQL instead of
PostgreSQL in configuration file. Program will compile but will fail
at runtime.

● Having Exception in Conditions for Injecting Objects can lead to
runtime Errors.

Increasing Runtime Errors

● DI frameworks are Implemented with Reflection and Dynamic
Programming in most of programming languages.

● Many IDE Automations like Code Completion, safe refactors, find
references, show call hierarchy and etc will be out of service.

IDE Automation? Forget About it

● Using DI for a Constant part of a program adds complexity and
Code Base Management Issues.

● Overusing Using DI and Adding redundant complexity to Code
Base, increases time of developing new features.

Management Issues

● DI will slow down Initialization of Applications. Reflection and DP
have some overheads sometimes.

Slow Initialization

● We should have same interface for two object or library to inject
them in applications interchangably.

● Some famous libraries with the same functionality, expose different
APIs. so in order to use DI we should use wrapper classes for
libraries. Considering and tracking library changes could spare
time

Same libraries, Different APIs

● https://en.wikipedia.org/wiki/Dependency_injection

● https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/

● https://softwareengineering.stackexchange.com/questions/371722/criticism-and-disadvantages-of-dependency-injection

● https://martinfowler.com/articles/injection.html

Resources

https://en.wikipedia.org/wiki/Dependency_injection
https://www.freecodecamp.org/news/a-quick-intro-to-dependency-injection-what-it-is-and-when-to-use-it-7578c84fa88f/
https://softwareengineering.stackexchange.com/questions/371722/criticism-and-disadvantages-of-dependency-injection
https://martinfowler.com/articles/injection.html

