In the name of god

u'/wu{, et

container orchestration
software architectures
Professor: Dr Mehrdad Ashtiani
Mehran Salmani - Mostafa Mohammad Ali Ebrahim



table of contents

® Orchestration basic

@)

@)

What are containers?

container orchestration

Container orchestration system reference architecture
Application model

Scheduling

Cluster infrastructure

Resource management

e Orchestration technology



What are containers?

e isolated user space instances running on a host
e so the term OS-level virtualization 1s used for container virtualization
e they can only run on similar guest operating systems as the underlying host

e less overhead, more portable, more scalable, fast start up, ...



Linux containers

User
Namespaces
node:6 o ms/aspnetcore:2 openjdk:8
(_:°PY'°“‘ /app/server.js /app/server.dll /app/servg
w!'|te layered L /ysr/bin/node /usr/bin/dotnet Jusr/bin/ji Control groups
filesystems (" /lib64/libc.so /lib64/libc.so /lib64/libc:

2 CPU
4GB
syscall

Kernel
o
\ 4

Security profile

Linux container building blocks

Image from sasha goldshtein dotNext talk



container orchestration

-

\

automatic process of managing or scheduling the work of individual containers

for applications based on microservices within multiple clusters.

~



https://avinetworks.com/what-are-microservices-and-containers/

Why to use container orchestration?

e scheduling of containers
e deployments of containers
e availability and Health monitoring of containers

e scaling of containers



Why to use container orchestration? (contd)

e allocation of resources between containers
e Joad balancing and service discovery of containers

e sccuring the interactions between containers.



container orchestration system architecture

Resource QoS
Requirements Requirements

|Task1||Task2| ITasan

Resource QoS
Requirements Reqguirements

Cluster Manager Master !

A

| Resource I Accouint | Admission | | ,sg;}b/ |
Monitor 9 Control Bduler
| Task Relocator | [ Task Launcher | | Task Merfior e |
Provisioner
[

_I Compute Cluster !

_l Worker 1 3=

\

f

L]0

_I Worker n !

|

| Container |

[ ]
[7

high level architecture reference for CO systems

( Container )
| Worker Agent | | Worker Agent |
A
| Y
‘I Infrastructure |
| Public Cloud | I Private Cloud | | Cluster | | Edge Devices |




application models

Long-running Jobs

Workload Batch Jobs

Cron Jobs

Application Model

Single Task

Multiple Independent Tasks

Job Composition

Multiple Co-located Tasks

Graph of Tasks

application model classification



scheduling: architecture

e (entralized

o  Pros: better optimization decisions

o  Cons: single point of failure - scalability/load issues
e Decentralized (either monolithic or modular)

o Pros: scalable

o Cons: needs request partitioning and state management policies

10



scheduling: state management in decentralized

e Shared state
o  optimistic parallelism
O  requires concurrency control

e Partial view

o no conflicts between schedulers

11



scheduling: two level architecture

e Scheduler framework layer
o responsible for placement decisions
e Resource management layer

o responsible for managing cluster resources

o offer-based or request based

12



scheduling: job scheduling

Job Scheduling

Node Selection

All Nodes

Task Preemption

Task Rescheduling

Placement Constraints —

Randomized Sample

Cluster Partition

— Affinity-based
—— Value-based
—— Query-based

—— Limit-based

job scheduling taxonomy

Label-based

13



cluster infrastructure

Non-Virtualized

Compute Nodes
Virtualized
Cluster Infrastructure
Static
—— Cluster Elasticity ——
Elastic

cluster infrastructure taxonomy

—— Manual scaling

——  Autoscaling

14



resource management

—— Resource Limits

—— Quota Management

—— Resource Requests

Eviction

—— Resource Reclamation

—— Throttling

Resource Management —— — Fine-grained

—— Resource Granularity —— Coarse-grained

—— Bundle

—— Oversubscription

—— Resource Consumption Estimation

resource management taxonomy

15



system objectives

Scalability

High Resource Utilization

System Objectives High Availability

—— High Scheduling Throughput

Application-specific QoS

Orchestration system objectives

16



table of contents (part 2)

e Orchestration technology
o Top3
o  Docker Swarm
m  Key concepts
m  Routing mesh
m  How Nodes Work
m  How Service Work
m  Scheduling
m  Security
m  Pros & Cons

o Comparison

o How do I choose



Kubernetes

e Developed by Google (Offshoot of Borge)
e Popularity

e Main Architecture Components

o  Cluster
> Kubernotos mastcr kubernetes
o Kubelet

o Pods

o Deployments, replicas, and ReplicaSets



Docker Swarm

e Fully Integrated

e [ess Extensible and Complex

e Main Architecture Components

©)

Swarm
Service
Manager Node
Worker Node

Task

19



Apache Mesos (and Marathon)

e Older Than Kubernetes
e Lightweight Interface
e Marathon a “production-grade”

e Main Architecture Components

o  Master daemon and agent daemon
o  Framework
o Offer

o Task

AVAVA
AVAVAYA

<
m

" VAVAVAVY

VAVAY

OS MARATHON

20



key concepts

What is a swarm?

o  The cluster management and orchestration
o  Consists of multiple nodes: Managers and Worker
o  Task vs standalone container

o Difference
Nodes

o  Manager nodes and worker nodes
Services and tasks
Load balancing

o 1ingress load balancing and internal load balancing

217



routing mesh

192.168.99.100:8080
my-web published port

192.168.99.101:8080
my-web published port

192.168.99.102:8080
my-web published port

swarm
load
balancer
"“""""::::.::.':x.
a;:d‘?-‘-'-'-'.'.‘ ...........
10.0.0.1:80
my-web. 1 i
192.16899.100

swarm
load
balancer
IR
................... ‘{___',__.....--...::::::::::
........... e
10.0.0.2:80

my-web.2 node2
192.168.99.101

"l
-----
-

swarm
load
balancer
anunanzynititl
node3
192.168.99.102

ingress network




How nodes work

Raft consensus group

Internal distributed state store .

Manager

Manager Manager

Worker

Workeré Worker Worker$ Workeré Worker$ Worker

Gossip network

23



How services work

service

ta|sk container
I
nginx. 1 nginx:latest

3 nginx
replicas

i

available node

nginx.2

nginx:latest

swarm manager

available node

nginx.3

nginx:latest

available node

24



How services work (cont'd)

Docker Engine client

swarm manager:

worker node

docker service create

RAFT

| accepts command and creates
API service object
hestrat reconciliation loop that creates
orchestrator tasks for service objects
allocater allocates ip addresses to tasks
dispatcher assigns tasks to nodes
scheduler instructs a worker to run a task
container
K connects to dispatcher to
worker check for assigned tasks
executes tasks assigned to
executor Vioiker neda

Tasks and scheduling

25



How services work (cont'd)

‘,-W"orker node \. / worker node

manager

. node .
workéi'"nodg / \ worke__r__nod'é”

replicated service global service with
with 3 replicas replicas on every node

Replicated and global services



scheduling

e Spread
e Binpack
e Random

e (Customize



security

Manager Manager Manager
Certificate [= Certificate [= Certificate [=
Authority Authority Authority

Worker Worker Worker
TLS n' TLS n' TLS n‘

28



pros & cons

® pros
o Specializes
o Lightweight & Flexible
o  Scalable
o Learning curve
® Cons
o  Failures of nodes
o  Specializes

o  Third-party tool

29



comparison

System classification for the application model

System Workload
Kubernetes All
Swarm Long-running jobs
Mesos All
Marathon Long-running jobs

Job Composition

Co-located tasks

Co-located tasks

Single task

Co-located tasks

30



comparison (cont'd)

System classification for job scheduling

System Architecture
Kubernetes Decentrgh_zed
monolithic
Decentralized
Swarm L
monolithic
Mesos Two-level
offerbased
Two-level
Marathon offerbased

Node
Selection

All nodes

All nodes

N/A

All nodes

Preemption

Placement

Rescheduling | o iraints

Label and
affinity-based

N Label and
affinity-based

- N/A

N Value and
querybased

31



comparison (cont'd)

System classification for cluster infrastructure

System Cluster Elasticity
Kubernetes Elastic, manual and autoscaling
Swarm Elastic, manual scaling
Mesos Elastic, manual scaling
Marathon Elastic, manual scaling

Cluster Infrastructure

Virtualized, non-virtualized

Virtualized, non-virtualized

Virtualized, non-virtualized

Virtualized, non-virtualized

32



comparison (cont'd)

System classification for resource management

System Ma,&;zt;ent
Kubernetes ré_cimg:{s
Swarm Requests
Mesos Requests
Marathon Requests

Resource
Reclamation

Eviction,
throttling

Eviction

Eviction,
throttling

Eviction,
throttling

Resource
Granularity

Fine-grained

Fine-grained

Fine-grained

Fine-grained

Oversubscript
ion

Resource
Estimation

33



comparison (cont'd)

System classification for system objectives

System Scalability Ava"i'lig‘i"ty
Kubernetes + -
Swarm + +
Mesos + +
Marathon + +

High
Utilization

High
Throughput

Application
QoS

34



So how do | choose?

e Architecture
e Scale
e [earning curve

e Third-party tool

35



references

Rodriguez, Maria A., and Rajkumar Buyya. "Container-based cluster orchestration systems: A taxonomy and future
directions." Software: Practice and Experience 49.5 (2019): 698-719.

"Container Orchestration Definition". Avinetworks, https://avinetworks.com/glossary/container-orchestration/.

"What Is Container Orchestration?". Newrelic, 2018,
https://blog.newrelic.com/engineering/container-orchestration-explained/.

"Swarm Mode Overview". Docker, https://docs.docker.com/engine/swarm/.

36



Thanks



