
Antipatterns

Mohammad Sanaye
Mehran Salmani
Amirhossein Asadi

Antipattern

A commonly occurring solution to a problem that
generates decidedly negative consequences

Antipatterns clarify the negative patterns that
cause development roadblocks

What an antipattern describes?

❏ The general form
❏ The primary causes
❏ Symptoms
❏ The consequences
❏ Refactored solution

Root causes

● Haste
● Apathy
● Narrow-mindness
● Sloth
● Avarice
● Ignorance
● Pride

Formal Refactoring Transformations

● Superclass abstraction

● Conditional elimination

● Aggregate abstraction

class Bird {

 // ...

 double getSpeed() {

 switch (type) {

 case EUROPEAN:

 return getBaseSpeed();

 case AFRICAN:

 return getBaseSpeed() - getLoadFactor() * numOfCoconuts;

 case NORWEGIAN_BLUE:

 return (isNailed) ? 0 : getBaseSpeed(voltage);

 }

 throw new RuntimeException("Should be unreachable");

 }

}

abstract class Bird {
 // ...
 abstract double getSpeed();
}

class European extends Bird {
 double getSpeed() {
 return getBaseSpeed();
 }
}
class African extends Bird {
 double getSpeed() {
 return getBaseSpeed() - getLoadFactor() *numberOfCoconuts;
 }
}
class NorwegianBlue extends Bird {
 double getSpeed() {
 return (isNailed) ? 0 : getBaseSpeed(voltage);
 }
}

conditional elimination example from https://refactoring.guru/

https://refactoring.guru/

Development Antipatterns

● God Class (blob)
● Functional Decomposition
● Poltergeists (gypsy)
● Cut and paste programming
● Call Super
● Lava Flow
● Spaghetti Code
● Golden Hammer

God Class (aka Blob)

The God class is found in designs
where one class monopolizes the
processing, and other classes
primarily encapsulate data

★ Root Causes: Sloth, Haste

Symptoms:

● A single controller class with associated simple data-object classes
● Single class with a large number of attributes, operation, or both
● Lack of cohesiveness of the attributes and operations

Consequences:

● Too complex for reuse and testing.
● The Blob limits the ability to modify the system without affecting the

functionality of other encapsulated objects.

Solution:

Solution(contd):

Solution(contd):

functional decomposition

This AntiPattern is the result of experienced,
nonobject-oriented developers who design and
 implement an application in an object-oriented
language.

★ Root Causes: Sloth

Symptoms:

● Classes with function names such as Calculate_Interest or Display_Table
● Classes with a single action
● no leveraging of object-oriented principles

Consequences:

● hard to maintain
● No hope of ever obtaining software reuse
● Frustration on the part of testers.

Solution:

● If the class has a single method, try to better model it as part of an existing
class.

● Attempt to combine several classes into a new class that satisfies a design
objective.

● If the class does not contain state information of any kind, consider
rewriting it as a function.

Poltergeists(aka gypsy)

Poltergeists are classes with limited
roles to play in the system;
therefore, their effective
life cycle is quite brief.

★ Root Causes: Ignorance

Symptoms:

● Transient associations
● Stateless classes.
● Classes with control-like operation names such as start_process_alpha

Consequences:

● they waste resources
● needlessly cluttering the object model.

Solution:

The key is to move the controlling actions initially encapsulated in the
Poltergeist into the related classes that they invoked.

Solution:

Cut and paste programming

This AntiPattern is identified by the presence
of several similar segments of code interspersed
throughout the software project.

★ Root Causes: Sloth

Symptoms and consequences:

● The same software bug reoccurs throughout software despite many local
fixes.

● Software defects are replicated through the system.
● Lines of code increase without adding to overall productivity.
● This AntiPattern leads to excessive software maintenance costs.
● It becomes difficult to locate and fix all instances of a particular mistake.

Typical causes:

● The organization does not advocate or reward reusable components, and
development speed overshadows all other evaluation factors.

● Reusable components, once created, are not sufficiently documented or
made readily available to developers.

● There is a lack of forethought or forward thinking among the development
teams.

● There is a lack of abstraction among developers, often accompanied by a
poor understanding of OO principles.

Solution:

refactor the code base into reusable
 libraries or components that focus
 on black-box reuse of functionality.

stages:

❏ code mining
❏ refactoring
❏ configuration management

Call super

A particular class stipulates that in a derived
subclass, the user is required to override a
method and call back the overridden function
itself at a particular point.

public class EventHandler ...
 public void handle (BankingEvent e) {
 housekeeping(e);
}
public class TransferEventHandler extends
EventHandler...
 public void handle(BankingEvent e) {
 super.handle(e);
 initiateTransfer(e);
}

Solution:

public class EventHandler … {
public void handle (BankingEvent e) {
 housekeeping(e);
 doHandle(e);
}
 protected void doHandle(BankingEvent e) {}
}

public class TransferEventHandler extends EventHandler … {
 protected void doHandle(BankingEvent e) {
 initiateTransfer(e);
 }
}

 Lava Flow (aka Dead Code)

immovable, generally useless mass of code

that no one can remember much, if

anything,about.

★ Root Causes: Avarice, Sloth

Symptoms and consequences:

● Undocumented complex, important-looking functions, classes, or
segments that don't clearly relate to the system architecture.

● Lots of "in flux" or "to be replaced" code areas.
● As the flows compound and harden, it rapidly becomes impossible to

document the code or understand its architecture enough to make
improvements.

Typical causes:

● R&D code placed into production without thought toward configuration
management.

● Uncontrolled distribution of unfinished code. Implementation of several
trial approaches toward implementing some functionality.

● Repetitive change of project

Solution:

● ensure that a sound architecture precedes production code
● this architecture is backed up by a configuration management process

that can handle requirement changes
● establish system-level software interfaces that are stable, well-defined,

and clearly documented

Spaghetti Code

Code which is so difficult to read or change that
it becomes nearly impossible to maintain.

★ Root Causes: Ignorance, Sloth

Symptoms and consequences:

● Minimal relationships exist between objects.
● Many object methods have no parameters, and utilize class or global

variables for processing.
● Benefits of object orientation are lost; inheritance is not used to extend the

system; polymorphism is not used.

Typical causes:

● Inexperience with object-oriented design technologies.
● No mentoring in place; ineffective code reviews.
● No design prior to implementation.
● Frequently the result of developers working in isolation.

Golden Hammer

This AntiPattern results in the misapplication of
a favored tool or concept

★ Root Causes: Ignorance, Pride,
Narrow-Mindedness

Symptoms and consequences:

● Identical tools and products are used for wide array of conceptually
diverse products.

● System architecture is best described by a particular product, application
suite, or vendor tool set.

● Existing products dictate design and system architecture.
● Requirements are not fully met, in an attempt to leverage existing

investment.

Typical causes:

● Several successes have used a particular approach.

● Large investment has been made in training and/or gaining experience in
a product or technology.

● Reliance on proprietary product features that aren't readily available in
other industry products.

Solution:

● organizations need to develop a commitment to an exploration of new
technologies.

● software developers need to be up to date on technology trends
● encourage the hiring of people from different areas and from different

backgrounds

reference:

Thanks!

