Antipatterns

Mohammad Sanaye
Mehran Salmani
Amirhossein Asadi

Antipattern

A commonly occurring solution to a problem that
generates decidedly negative consequences

Antipatterns clarify the negative patterns that
cause development roadblocks

What an antipattern describes?

The general form
The primary causes
Symptoms

The consequences
Refactored solution

Iy Wy Wiy Ny N

Root causes

Haste

Apathy
Narrow-mindness
Sloth

Avarice

lgnorance
Pride

Formal Refactoring Transformations

e Superclass abstraction
e Conditional elimination
e Aggregate abstraction

class Bird {
//
double getSpeed() {
switch (type) {
case EUROPEAN:
return getBaseSpeed() ;
case AFRICAN:
return getBaseSpeed() - getLoadFactor () * numOfCoconuts;
case NORWEGIAN BLUE:
return (isNailed) ? 0 : getBaseSpeed(voltage);

}

throw new RuntimeException ("Should be unreachable");

abstract class Bird {
VA
abstract double getSpeed() ;

class European extends Bird ({
double getSpeed() {
return getBaseSpeed() ;
}
}
class African extends Bird {
double getSpeed() {
return getBaseSpeed() - getLoadFactor () *numberOfCoconuts;
}
}
class NorwegianBlue extends Bird {
double getSpeed() {
return (isNailed) ? 0 : getBaseSpeed(voltage);
}
}

conditional elimination example from https://refactoring.quru/

https://refactoring.guru/

Development Antipatterns

God Class (blob)

Functional Decomposition
Poltergeists (gypsy)

Cut and paste programming
Call Super

Lava Flow

Spaghetti Code

Golden Hammer

God Class (aka Blob)

The God class is found in designs
where one class monopolizes the
processing, and other classes
primarily encapsulate data

% Root Causes: Sloth, Haste

Symptoms:

e A single controller class with associated simple data-object classes
e Single class with a large number of attributes, operation, or both
e |ack of cohesiveness of the attributes and operations

Consequences:

e Too complex for reuse and testing.
e The Blob limits the ability to modify the system without affecting the
functionality of other encapsulated objects.

Solution:

Library Main Control

Catalog

+ Current_Catalog
+ Current_Item

+ User_ID

+ Fine_amount

Person

+ Do_Inventory()

+ Check_Out_Item()
+ Check_In_ltem()
+ Add_Item()

+ Delete_Item()

+ Print_Catalog()

+ Sort_Catalog()

+ Search_Catalog()

Iltem

Solution(contd):

Catalog

Related methods

Library Main Control

+ Current_Catalog
+ Current_ltem

+ User_ID

+ Fine_amount

Person

+ Do_Inventory()

+ Check_Out_ltem()
+ Check_In_lItem()
+ Add_Item()

+ Delete_Item()

+ Print_Catalog()

+ Sort_Catalog()

+ Search_Catalog()

Item

Solution(contd):

Catalog

Library Main Control

+ Current_Catalog
- Current_ltem

+ User_ID

+ Fine_amount

Person

+ Do_Inventory()

+ Check_Out_Item()
+ Check_In_Item()
+ Add_Item()

+ Delete_Item()

+ Print_Catalog()

+ Sort_Catalog()

+ Search_Catalog()

ltem

Eliminate coupling
by moving relation
to Catalog

functional decomposition

This AntiPattern is the result of experienced,
nonobject-oriented developers who design and
implement an application in an object-oriented
language.

% Root Causes: Sloth

e A R w
i
' ¥ 1
[[Lo i
- e (v prmoriimg
217y o . 3
Y) -
al - Fighs E e J Ry - —_pe S rowy
- -
N g 0 X d e Ry
e -~ Trawawy (s A ey Y
- —
e AL T] e R h M
| ¥ “
Ty
. Copar iy i Tt thmnm

Symptoms:

e Classes with function names such as Calculate_Interest or Display_Table
e Classes with a single action
e no leveraging of object-oriented principles

Consequences:

e hard to maintain
e No hope of ever obtaining software reuse
e Frustration on the part of testers.

Solution:

e |[f the class has a single method, try to better model it as part of an existing
class.

e Attempt to combine several classes into a hew class that satisfies a design
objective.

e If the class does not contain state information of any kind, consider
rewriting it as a function.

Poltergeists(aka gypsy)

Poltergeists are classes with limited
roles to play in the system;
therefore, their effective

life cycle is quite brief.

% Root Causes: Ignorance

Symptoms:

e Transient associations
e Stateless classes.
e Classes with control-like operation names such as start_process_alpha

Consequences:

e they waste resources
e needlessly cluttering the object model.

Solution:

The key is to move the controlling actions initially encapsulated in the
Poltergeist into the related classes that they invoked.

" { Process timer \

Peaches Washer Peeler Peach canner controller [Chopper] l Canner]

Evaluate Rule Base

[[L 5] J l‘;J J
l Calendar]

Solution:

Raw peaches bin]7

Peach canner system

SortRawPeaches()
ScheduleJob()
AssignTasks()
AllocateResources()
Inventory()

Canned peaches bin]

Machine

Washer]

Peeler]

Canner Chopper

Calendar l

Cut and paste programming

This AntiPattern is identified by the presence
of several similar segments of code interspersed
throughout the software project.

% Root Causes: Sloth

Symptoms and consequences:

e The same software bug reoccurs throughout software despite many local
fixes.

Software defects are replicated through the system.

Lines of code increase without adding to overall productivity.

This AntiPattern leads to excessive software maintenance costs.

It becomes difficult to locate and fix all instances of a particular mistake.

Typical causes:

e The organization does not advocate or reward reusable components, and
development speed overshadows all other evaluation factors.

e Reusable components, once created, are not sufficiently documented or
made readily available to developers.

e Thereis alack of forethought or forward thinking among the development
teams.

e Thereis a lack of abstraction among developers, often accompanied by a
poor understanding of OO principles.

Solution:

refactor the code base into reusable
libraries or components that focus
on black-box reuse of functionality.

stages:
d code mining

A refactoring
d configuration management

public class EventHandler ...

Ca” Su per public void handle (BankingEvent e) {

housekeeping(e);
Y
. . . . public class TransferEventHandler extends
A particular class s.tlpulat.es thatina d.erlved EventHandler...
subclass, the user is required tg override a public void handle(BankingEvent e) {
method and call back the overridden function super.handle(e);
itself at a particular point. initiate Transfer(e);

}

Solution:

public class EventHandler .. {
public void handle (BankingEvent e) {
housekeeping(e);
doHandle(e);
I
protected void doHandle(BankingEvent e) {1
I

public class TransferEventHandler extends EventHandler .. {
protected void doHandle(BankingEvent e) {
initiateTransfer(e);
|
}

Lava Flow (aka Dead Code)

immovable, generally useless mass of code
that no one can remember much, if
anything,about.

% Root Causes: Avarice, Sloth

// This class was written by someone earlier (Alex?) to manager the indexing
// or something (maybe). It's probably important. Don't delete. I don't think it's
// used anywhere - at least not in the new MacroINdexer module which may
// actually replace whatever this was used for.
class IndexFrame extends Frame {
// IndexFrame constructor

public IndexFrame(String index_parameter 1)

{
// Note: need to add additional stuff here...

super (str);

}

Symptoms and consequences:

e Undocumented complex, important-looking functions, classes, or
segments that don't clearly relate to the system architecture.

e Lotsof'in flux' or "to be replaced” code areas.

e As the flows compound and harden, it rapidly becomes impossible to
document the code or understand its architecture enough to make
improvements.

Typical causes:

e R&D code placed into production without thought toward configuration
management.

e Uncontrolled distribution of unfinished code. Implementation of several
trial approaches toward implementing some functionality.

e Repetitive change of project

Solution:

e ensure that a sound architecture precedes production code

e this architecture is backed up by a configuration management process
that can handle requirement changes

e establish system-level software interfaces that are stable, well-defined,
and clearly documented

110101 1

10101140
I 40011001
Qoo 10181

11010011

s1gi1oiin

1ugiiopt
aagi1oi1pi

Spaghetti Code

11010D11
41010110
140011001
Q40015107

Code which is so difficult to read or change that oidiaiia
DoDD1014 a1010118
it becomes nearly impossible to maintain. oot

TO
11010011 Go
olai0110

104011001

3010101 <O

% Root Causes: Ignorance, Sloth

Symptoms and consequences:

e Minimal relationships exist between objects.
e Many object methods have no parameters, and utilize class or global

variables for processing.
e Benefits of object orientation are lost; inheritance is not used to extend the

system; polymorphism is not used.

Typical causes:

Inexperience with object-oriented design technologies.
No mentoring in place; ineffective code reviews.

No design prior to implementation.

Frequently the result of developers working in isolation.

Golden Hammer

This AntiPattern results in the misapplication of
a favored tool or concept

* Root Causes: Ignorance, Pride,
Narrow-Mindedness

Symptoms and consequences:

e |dentical tools and products are used for wide array of conceptually
diverse products.

e System architecture is best described by a particular product, application
suite, or vendor tool set.

e Existing products dictate design and system architecture.

e Requirements are not fully met, in an attempt to leverage existing
investment.

Typical causes:

e Several successes have used a particular approach.

e [arge investment has been made in training and/or gaining experience in
a product or technology.

e Reliance on proprietary product features that aren't readily available in
other industry products.

Solution:

e organizations need to develop a commitment to an exploration of new
technologies.

e software developers need to be up to date on technology trends

e cncourage the hiring of people from different areas and from different
backgrounds

reference:

atterns

Refactoring Software, Architectures,
and Projects in Crisis

Lt SR s b

William H. Brown Raphael C. Malveau
Hays W.“Skip” McCormicklll Thomas J. Mowbray

Thanks!

